SfN Day 2: Gender bias (implicit or otherwise) in neuroscience careers

Photo source: Wikimedia Commons

Photo source: Wikimedia Commons

Today’s Theme H symposium on gender bias in neuroscience was both eye-opening and frustrating at the same time. It’s clear that these biases are not only highly prevalent, but they are also directly affecting gender distribution in neuroscience careers. For example, the symposium chair, Jennifer Raymond from Stanford, noted that at the current rates of promotion in neuroscientific careers we can expect to achieve 50% of assistant professors as women by the year 2117. How depressing is that? Raymond noted that this bias is hurting innovation and excellence in neuroscience, as we are only drawing from half our potential talent pool.

The first presenter, Hannah Valantine from the Stanford School of Medicine, discussed the possibility of using institution-wide intervention to reduce the stereotyping of women in the medical fields. Her work stems from the increasing attrition of women from medical positions at higher levels of leadership. Valantine emphasizes that stereotypes often operate outside our consciousness. For instance, if elementary school students are asked to draw a scientist, greater than 50% of the time they will draw a white male. Valantine also cited the famous CV study, in which university psychology professors were asked to evaluate identical CVs, except one had the name “Karen” at the top and the other had the name “Brian.” Perhaps unsurprisingly, the professors preferred to hire Brian over Karen.

At Stanford, Valantine is developing a program  geared toward reversing this bias. The Recruitment to Expand Diversity and Excellence (REDE) program works to increase awareness of potential bias and stereotypes. Importantly, this intervention seems to decrease the strength of one’s belief in having a lack of personal bias. Additionally, a belongingness intervention at Stanford has been shown to increase belief in career advancement and personal potential among women in medicine. Overall, short term intervention seems to be capable of reducing gender bias and promoting resilience of women in the workplace.

I snuck out of the symposium to catch the talk about which I wrote my previous post so I missed the second presenter. The next presenter, Peter Glick from Lawrence University, discussed the presence of “benevolent sexism” (with the clever acronym of “BS”) in science. This type of sexism involves subtle, patronizing discrimination, as opposed to outright hostile sexism. For example, women tend to receive more positive feedback, yet are given less challenging assignments, creating a sense of hallow praise.

Benevolent sexism creates a “double bind,” in which women who experience it perform poorly (in an experimental setting), and yet if they reject this treatment, they are perceived as less warm. In other words, if you are patronized and stand up to it, you lose respect. This pattern of sexist behavior in the workplace clearly needs to change. Glick stressed the importance of recognizing this more under-the-radar type of sexism in science. To work against the effects of benevolent sexism, he proposes “wise mentoring,” in which female students are given equal amounts of critical feedback as male students. In line with Valantine’s ideas, Glick believes this feedback should be supplemented with personal assurance and encouragement, which promotes belongingness, as opposed to rejection, among female students.

The last presenter, Muriel Niederle from Stanford, has been exploring the “opt out phenomenon,” in which women are increasingly choosing not to pursue careers in the sciences. She presented data on identifying a non-cognitive skill that might explain the strong presence of gender bias in the STEM fields. Using an economics-based paradigm, Niederle has discovered that competitiveness may account for a large portion of gender bias. She has tested this idea in 9th grade classes in the Netherlands, in which she found that the degree of competitiveness among girls strongly predicts whether or not they enter academic tracks that are viewed as more prestigious, such as technology and biology. Identifying this potential moderator of gender bias will hopefully help in efforts to reverse the effects of bias on the future of neuroscience.